
Security Assessment

Tokenwolf - Audit
CertiK Verified on Oct 20th, 2022

Executive Summary

Vulnerability Summary

1 Critical 1 Resolved

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

6 Major 4 Resolved, 2 Mitigated
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

2 Medium 2 Resolved Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

5 Minor 5 Resolved

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

2 Informational 2 Resolved

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY TOKENWOLF - AUDIT

CertiK Verified on Oct 20th, 2022

Tokenwolf - Audit

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

Exchange

ECOSYSTEM

EVM Compatible

METHODS

Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 10/20/2022

KEY COMPONENTS

N/A

CODEBASE
File provided by the client

...View All

16
Total Findings

14
Resolved

2
Mitigated

0
Partially Resolved

0
Acknowledged

0
Declined

0
Unresolved

TABLE OF CONTENTS TOKENWOLF - AUDIT

TABLE OF CONTENTS TOKENWOLF - AUDIT

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Findings

BTC-01 : Potential Double Voting

BTC-02 : Unused Field `deadlineTimestamp`

BTC-03 : Missing Input Validation on `voteType`

STC-01 : No Upper Limit for Fee Rates

STC-02 : Check Effect Interaction Pattern Violated

STC-03 : Possible DOS Attack

STC-04 : No Access Control on `cancelOffer()`

STC-05 : Function `showOffers()` May Not Work as Intended

STC-06 : Divide Before Multiply

STC-07 : Missing Check `quantity` <= `offer.quantity`

STC-08 : Missing Check in `cancelOffer()`

TCK-01 : Centralization Risks

TCK-02 : Missing Zero Address Validation

TTC-01 : Initial Token Distribution

STC-10 : Restore Deleted Offer

STC-11 : Invalid Checks on `amount`

Optimizations

STC-09 : Gas Optimization in `showOffers()`

TCK-03 : Variables That Could Be Declared as Immutable

Formal Verification

Considered Functions And Scope

Verification Results

Appendix

Disclaimer

TABLE OF CONTENTS TOKENWOLF - AUDIT

TABLE OF CONTENTS TOKENWOLF - AUDIT

CODEBASE TOKENWOLF - AUDIT

Repository

File provided by the client

CODEBASE TOKENWOLF - AUDIT

AUDIT SCOPE TOKENWOLF - AUDIT

4 files audited 3 files with Mitigated findings 1 file without findings

ID File SHA256 Checksum

BTC
projects/Tokenwolf/contracts/Ballo

t.sol

4c07ce4cdac6d0bcb53e32f9851bec1e35fdd05cbfa52445cd2f38d06

62c6e27

STC
projects/Tokenwolf/contracts/Swa

p2.sol

66a7e64200600251cae1955639e05f9d46f0afe96056baa6584e1d4

3d1f6e70c

TTC
projects/Tokenwolf/contracts/Toke

n3.sol

503ad6ed0391ed7df95742628a0b3b152bb3ac6fa8fb9b269eb7f601

182f416a

OTC
projects/Tokenwolf/contracts/Own

er.sol

83a59a5493d00c3f6f322646e9e6d4f86af71d8e69974e383f0101a3

2dcbdeb3

AUDIT SCOPE TOKENWOLF - AUDIT

APPROACH & METHODS TOKENWOLF - AUDIT

This report has been prepared for Tokenwolf to discover issues and vulnerabilities in the source code of the Tokenwolf - Audit

project as well as any contract dependencies that were not part of an officially recognized library. A comprehensive

examination has been performed, utilizing Manual Review and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices.
We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS TOKENWOLF - AUDIT

FINDINGS TOKENWOLF - AUDIT

This report has been prepared to discover issues and vulnerabilities for Tokenwolf - Audit. Through this audit, we have

uncovered 16 issues ranging from different severity levels. Utilizing the techniques of Manual Review & Static Analysis to

complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

BTC-01 Potential Double Voting Logical Issue Major Resolved

BTC-02 Unused Field deadlineTimestamp Control Flow Medium Resolved

BTC-03 Missing Input Validation On voteType Control Flow Minor Resolved

STC-01 No Upper Limit For Fee Rates Control Flow Critical Resolved

STC-02 Check Effect Interaction Pattern Violated Volatile Code Major Resolved

STC-03 Possible DOS Attack Volatile Code Major Resolved

STC-04 No Access Control On cancelOffer() Control Flow Major Resolved

STC-05
Function showOffers() May Not Work As

Intended
Logical Issue Medium Resolved

STC-06 Divide Before Multiply
Mathematical

Operations
Minor Resolved

STC-07
Missing Check quantity <=

offer.quantity
Logical Issue Minor Resolved

FINDINGS TOKENWOLF - AUDIT

16
Total Findings

1
Critical

6
Major

2
Medium

5
Minor

2
Informational

https://accelerator.audit.certikpowered.info/project/7c676880-3f87-11ed-ab05-d717e89b76ba/report?fid=1665242765525
https://accelerator.audit.certikpowered.info/project/7c676880-3f87-11ed-ab05-d717e89b76ba/report?fid=1665253762061
https://accelerator.audit.certikpowered.info/project/7c676880-3f87-11ed-ab05-d717e89b76ba/report?fid=1665254122345
https://accelerator.audit.certikpowered.info/project/7c676880-3f87-11ed-ab05-d717e89b76ba/report?fid=1665259509591
https://accelerator.audit.certikpowered.info/project/7c676880-3f87-11ed-ab05-d717e89b76ba/report?fid=1665154591611
https://accelerator.audit.certikpowered.info/project/7c676880-3f87-11ed-ab05-d717e89b76ba/report?fid=1665258392080
https://accelerator.audit.certikpowered.info/project/7c676880-3f87-11ed-ab05-d717e89b76ba/report?fid=1665258673714
https://accelerator.audit.certikpowered.info/project/7c676880-3f87-11ed-ab05-d717e89b76ba/report?fid=1665261819198
https://accelerator.audit.certikpowered.info/project/7c676880-3f87-11ed-ab05-d717e89b76ba/report?fid=1665154591607
https://accelerator.audit.certikpowered.info/project/7c676880-3f87-11ed-ab05-d717e89b76ba/report?fid=1665261039233

ID Title Category Severity Status

STC-08 Missing Check In cancelOffer() Logical Issue Minor Resolved

TCK-01 Centralization Risks
Centralization /

Privilege
Major Mitigated

TCK-02 Missing Zero Address Validation Volatile Code Minor Resolved

TTC-01 Initial Token Distribution
Centralization /

Privilege
Major Mitigated

STC-10 Restore Deleted Offer Logical Issue Informational Resolved

STC-11 Invalid Checks On amount Logical Issue Informational Resolved

FINDINGS TOKENWOLF - AUDIT

https://accelerator.audit.certikpowered.info/project/7c676880-3f87-11ed-ab05-d717e89b76ba/report?fid=1665333175794
https://accelerator.audit.certikpowered.info/project/7c676880-3f87-11ed-ab05-d717e89b76ba/report?fid=1665411600402
https://accelerator.audit.certikpowered.info/project/7c676880-3f87-11ed-ab05-d717e89b76ba/report?fid=1665154591605
https://accelerator.audit.certikpowered.info/project/7c676880-3f87-11ed-ab05-d717e89b76ba/report?fid=1665241065142
https://accelerator.audit.certikpowered.info/project/7c676880-3f87-11ed-ab05-d717e89b76ba/report?fid=1665259818427
https://accelerator.audit.certikpowered.info/project/7c676880-3f87-11ed-ab05-d717e89b76ba/report?fid=1665330731197

BTC-01 POTENTIAL DOUBLE VOTING

Category Severity Location Status

Logical Issue Major projects/Tokenwolf/contracts/Ballot.sol: 68 Resolved

Description

61 function vote(uint256 proposalId, uint8 voteType) public {

62 SecurityToken token = SecurityToken(_tokenAddress);

63 uint voteCount = token.getPastVotes(msg.sender,

_proposals[proposalId].blockNumber);

64 require(voteCount > 0, "User has no voting rights");

65 if (voteType == 0) _proposals[proposalId].voteCountContra += voteCount;

66 if (voteType == 1) _proposals[proposalId].voteCountPro += voteCount;

67 if (voteType == 2) _proposals[proposalId].voteCountAbstain +=

voteCount;

68 _votedOnProposalId[msg.sender][proposalId] = true;

69 }

The function vote() sets _votedOnProposalId[msg.sender][proposalId] to be true at the end, which means

msg.sender voted for the proposal with proposalId . However, because the function does not require

_votedOnProposalId[msg.sender][proposalId] to be false, an account can vote twice or even unlimited times.

Recommendation

We recommend adding additional logic built into the contract to prevent double voting.

Alleviation

This issue was resolved in the updated code.

BTC-01 TOKENWOLF - AUDIT

https://accelerator.audit.certikpowered.info/project/7c676880-3f87-11ed-ab05-d717e89b76ba/report?fid=1665242765525

BTC-02 UNUSED FIELD deadlineTimestamp

Category Severity Location Status

Control Flow Medium projects/Tokenwolf/contracts/Ballot.sol: 13, 61 Resolved

Description

10 struct Proposal {

11 string name;

12 uint proposalTimestamp;

13 uint deadlineTimestamp;

14 uint blockNumber;

15 uint voteCountPro;

16 uint voteCountContra;

17 uint voteCountAbstain;

18 }

The field deadlineTimestamp stands for the deadline for voting. Because the function vote() does not check a proposal's

deadlineTimestamp , a user can vote for an expired proposal.

Recommendation

We recommend adding sanity checks to ensure a user cannot vote for an expired proposal.

Alleviation

This issue was resolved in the updated code.

BTC-02 TOKENWOLF - AUDIT

https://accelerator.audit.certikpowered.info/project/7c676880-3f87-11ed-ab05-d717e89b76ba/report?fid=1665253762061

BTC-03 MISSING INPUT VALIDATION ON voteType

Category Severity Location Status

Control Flow Minor projects/Tokenwolf/contracts/Ballot.sol: 61 Resolved

Description

61 function vote(uint256 proposalId, uint8 voteType) public {

62 SecurityToken token = SecurityToken(_tokenAddress);

63 uint voteCount = token.getPastVotes(msg.sender,

_proposals[proposalId].blockNumber);

64 require(voteCount > 0, "User has no voting rights");

65 if (voteType == 0) _proposals[proposalId].voteCountContra += voteCount;

66 if (voteType == 1) _proposals[proposalId].voteCountPro += voteCount;

67 if (voteType == 2) _proposals[proposalId].voteCountAbstain +=

voteCount;

68 _votedOnProposalId[msg.sender][proposalId] = true;

69 }

The function vote() does not require the parameter voteType to be only 0, 1, or 2. A vote is invalid if the value of

voteType is larger than 2.

Recommendation

We advise adding the check for the passed-in value to prevent invalid votes.

Alleviation

This issue was resolved in the updated code.

BTC-03 TOKENWOLF - AUDIT

https://accelerator.audit.certikpowered.info/project/7c676880-3f87-11ed-ab05-d717e89b76ba/report?fid=1665254122345

STC-01 NO UPPER LIMIT FOR FEE RATES

Category Severity Location Status

Control Flow Critical projects/Tokenwolf/contracts/Swap2.sol: 111~112 Resolved

Description

110 function setFees(uint256 makerFee, uint256 takerFee) public onlyOwner {

111 _makerFee = makerFee;

112 _takerFee = takerFee;

113 }

The _owner can set _makerFee and _takerFee in the contract and there is no upper limit on what the fee rate can be. In

the extreme case, the fee can be higher than 100%, implying that users cannot buy or sell the token.

Moreover, for a "buy offer", the "maker fee" is not deducted from the swapping tokens but is transferred to this contract

separately. If the _owner is compromised, an attacker can steal all the buyer's balance of _otherToken . Here is the attack

scenario:

an account approves all its balance of _otherToken and creates a "buy offer" via the function addOffer()

the _owner updates _makerFee to a high value via the function setFees()

the _owner or any account accepts the "buy offer" via acceptOffer()

all or a lot of the offer creator's _otherToken would be transferred to this contract, and those tokens can be

withdrawn by the _owner

Recommendation

We recommend setting reasonable upper limits for _makerFee and _takerFee , such as 10%.

Alleviation

Resolved by setting the upper limits to 10% for _makerFee and _takerFee in the updated code.

STC-01 TOKENWOLF - AUDIT

https://accelerator.audit.certikpowered.info/project/7c676880-3f87-11ed-ab05-d717e89b76ba/report?fid=1665259509591

STC-02 CHECK EFFECT INTERACTION PATTERN VIOLATED

Category Severity Location Status

Volatile

Code
Major

projects/Tokenwolf/contracts/Swap2.sol: 320, 322, 324, 330, 332, 334, 33

8, 339, 341, 361
Resolved

Description

In the function acceptOffer() , offer.quantity is decreased after transferring the tokens, which violates the check-

effect-interaction pattern. The function acceptOffer() triggers the following external function calls. If the token1 ,

token2 , or both have a hook, they can reenter the same function and drain token balance from msg.sender or

counterpart .

External call(s)

320 require(token2.transferFrom(msg.sender, counterpart,

amountOtherToken-makerFee), "Transfer of token2 failed");

322 require(token1.transferFrom(counterpart, msg.sender, amountToken),

"Transfer of token1 failed");

324 require(token2.transferFrom(msg.sender, address(this),

takerFee+makerFee), "Transfer of fees failed");

330 require(token1.transferFrom(msg.sender, counterpart, amountToken),

"Transfer of token1 failed");

332 require(token2.transferFrom(counterpart, msg.sender,

amountOtherToken-takerFee), "Transfer of token2 failed");

334 require(token2.transferFrom(counterpart, address(this),

makerFee+takerFee), "Transfer of fees failed");

State variables written after the call(s)

338 offer.quantity -= quantity;

339 if (offer.quantity == 0) cancelOffer(id);

340 // save modified offer to storage

341 offers[id] = offer;

STC-02 TOKENWOLF - AUDIT

https://accelerator.audit.certikpowered.info/project/7c676880-3f87-11ed-ab05-d717e89b76ba/report?fid=1665154591611

Events emitted after the call(s)

351 emit NewTrade(block.timestamp, amountToken, amountOtherToken);

350 emit OffersChanged();

365 emit OffersChanged();

Recommendation

We recommend using the Checks-Effects-Interactions Pattern to avoid the risk of calling unknown contracts or applying

OpenZeppelin ReentrancyGuard library - nonReentrant modifier for the aforementioned functions to prevent reentrancy

attack.

Alleviation

This issue was resolved in the updated code.

STC-02 TOKENWOLF - AUDIT

https://docs.soliditylang.org/en/v0.6.12/security-considerations.html#use-the-checks-effects-interactions-pattern
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol

STC-03 POSSIBLE DOS ATTACK

Category Severity Location Status

Volatile Code Major projects/Tokenwolf/contracts/Swap2.sol: 277, 382~386 Resolved

Description

382 function firstFreeSlot() public view returns (uint8 index) {

383 for (uint8 t = 0; t < 255; t++) {

384 if (usedSlots[t] == false) return t;

385 }

386 }

The function firstFreeSlot() returns the smallest value between 0 to 254 that is not currently used as an offer's ID, or

returns 0 if all numbers are in use. When an offer is created via the function addOffer() , it would be assigned the return

value of firstFreeSlot() as its ID. And a valid offer must have an ID.

However, an attacker can call the function addProposal() multiple times to fill up all IDs between 0 to 254. Then the

following creators can only constantly overwrite the offer with ID 0.

Recommendation

We recommend reconsidering the logic to prevent the potential DOS attack.

Alleviation

Resolved the issue by adding access controls and zero checks for the inputted values.

STC-03 TOKENWOLF - AUDIT

https://accelerator.audit.certikpowered.info/project/7c676880-3f87-11ed-ab05-d717e89b76ba/report?fid=1665258392080

STC-04 NO ACCESS CONTROL ON cancelOffer()

Category Severity Location Status

Control Flow Major projects/Tokenwolf/contracts/Swap2.sol: 359 Resolved

Description

359 function cancelOffer(uint8 id) public {

360 // delete offer from storage and mark the slot as free

361 delete(offers[id]);

362 usedSlots[id] = false;

363 _offerCount--;

364 // fire event

365 emit OffersChanged();

366 }

The function cancelOffer() does not have any access control, any account can call this function to cancel any offer.

Recommendation

We recommend adding appropriate access control.

Alleviation

This issue was resolved in the updated code.

STC-04 TOKENWOLF - AUDIT

https://accelerator.audit.certikpowered.info/project/7c676880-3f87-11ed-ab05-d717e89b76ba/report?fid=1665258673714

STC-05 FUNCTION showOffers() MAY NOT WORK AS INTENDED

Category Severity Location Status

Logical Issue Medium projects/Tokenwolf/contracts/Swap2.sol: 422~423 Resolved

Description

398 function showOffers() public view returns (OfferDetails[] memory) {

399 // counter for result array

400 uint8 cnt = 0;

401 // counter for all offers

402 uint8 cnt2 = 0;

403 // create result array

404 OfferDetails[] memory result = new OfferDetails[](_offerCount);

405 // if there are no offers => return an empty array

406 if (_offerCount == 0) return result;

407 // iterate all slots and check for valid offers

408 for (uint8 t = 0; t < 255; t++) {

409 // check validity of offer (counterpart funds and allowance)

410 (bool check,) = checkOfferCounterpart(t,0);

411 if (usedSlots[t] == true) {

412 OfferDetails memory details;

413 details.quantity = offers[t].quantity;

414 details.price = offers[t].price;

415 details.bid = offers[t].bid;

416 details.offererAddress = offers[t].offererAddress;

417 details.id = t;

418 details.valid = check;

419 result[cnt] = details;

420 cnt++;

421 }

422 cnt2++;

423 if (cnt2 == _offerCount) return result;

424 }

425 return result;

426 }

The function showOffers() uses cnt2 , which represents how many times the loop is executed rather than how many

existing offers are found. When cnt2 equals _offerCount , the number of existing offers, the function returns the result.

So the function may not return all the valid offers as intended.

Recommendation

STC-05 TOKENWOLF - AUDIT

https://accelerator.audit.certikpowered.info/project/7c676880-3f87-11ed-ab05-d717e89b76ba/report?fid=1665261819198

We recommend reconsidering the logic to implement the intended design.

Alleviation

This issue was resolved in the updated code.

STC-05 TOKENWOLF - AUDIT

STC-06 DIVIDE BEFORE MULTIPLY

Category Severity Location Status

Mathematical Operations Minor projects/Tokenwolf/contracts/Swap2.sol: 129, 131 Resolved

Description

127 function calculateFees(uint256 amount, bool maker) public view returns

(uint256) {

128 if (maker == true) {

129 return(_makerFee * (amount/10**decimals2));

130 } else {

131 return(_takerFee * (amount/10**decimals2));

132 }

133 }

Performing integer division before multiplication truncates the low bits, losing the precision of calculation.

The function calculateFees() is used in the function acceptOffer() to calculate the fees when trading an offer. The

parameter amount stands for the amount of _otherToken for swapping, the variable decimals2 is the _otherToken 's

decimals.

If amount < 10**decimals2 , the return value of calculateFees() would be 0, which means no fee would be collected in

the function call of acceptOffer() . Even though amount > 10**decimals2 , fees would be less than expected due to the

loss of precision.

Recommendation

We recommend applying multiplication before division to avoid loss of precision.

Alleviation

This issue was resolved in the updated code.

STC-06 TOKENWOLF - AUDIT

https://accelerator.audit.certikpowered.info/project/7c676880-3f87-11ed-ab05-d717e89b76ba/report?fid=1665154591607

STC-07 MISSING CHECK quantity <= offer.quantity

Category Severity Location Status

Logical Issue Minor projects/Tokenwolf/contracts/Swap2.sol: 210 Resolved

Description

The function checkOfferCounterpart() does not require the inputted value of quantity <= offer.quantity and could

return an incorrect value.

Recommendation

We recommend adding sanity checks on the inputted parameter.

Alleviation

This issue was resolved in the updated code.

STC-07 TOKENWOLF - AUDIT

https://accelerator.audit.certikpowered.info/project/7c676880-3f87-11ed-ab05-d717e89b76ba/report?fid=1665261039233

STC-08 MISSING CHECK IN cancelOffer()

Category Severity Location Status

Logical Issue Minor projects/Tokenwolf/contracts/Swap2.sol: 363, 398 Resolved

Description

363 function cancelOffer(uint8 id) public {

364 // delete offer from storage and mark the slot as free

365 delete(offers[id]);

366 usedSlots[id] = false;

367 _offerCount--;

368 // fire event

369 emit OffersChanged();

370 }

The function does not check if an offer exists and decreases the value of _offerCount , which stands for the number of

existing offers. This would make the function showOffers() that returns all existing offers invalid.

Recommendation

We recommend adding sanity checks to ensure the function cancelOffer() only cancels existing offers.

Alleviation

This issue was resolved in the updated code.

STC-08 TOKENWOLF - AUDIT

https://accelerator.audit.certikpowered.info/project/7c676880-3f87-11ed-ab05-d717e89b76ba/report?fid=1665333175794

TCK-01 CENTRALIZATION RISKS

Category Severity Location Status

Centralization

/ Privilege
Major

projects/Tokenwolf/contracts/Ballot.sol: 41; projects/Tokenwolf/

contracts/Swap2.sol: 110, 472; projects/Tokenwolf/contracts/To

ken3.sol: 84, 130, 138, 148, 158; projects/Tokenwolf/contracts/op

enzeppelin/access/Ownable.sol: 54, 62

Mitigated

Description

In the contract Ownable the role _owner has authority over the functions shown in the diagram below.
Any compromise to

the _owner account may allow the hacker to take advantage of this authority and renounce or transfer the ownership.

Function

Function Calls
Function

Authenticated Role

renounceOwnership

_transferOwnership
transferOwnership

_owner

In the contract SecurityToken the role _manager has authority over the functions shown in the diagram below.
Any

compromise to the _manager account may allow the hacker to take advantage of this authority and allow or disallow users

to transfer tokens.

TCK-01 TOKENWOLF - AUDIT

https://accelerator.audit.certikpowered.info/project/7c676880-3f87-11ed-ab05-d717e89b76ba/report?fid=1665411600402

Authenticated Role

Function

Function

Function

_manager

allowTransfer

batchAllowTransfer

batchRevokeTransferAllowance

In the contract SecurityToken the role _owner has authority over the functions shown in the diagram below.
Any

compromise to the _owner account may allow the hacker to take advantage of this authority and set the role _manager or

mint tokens.

Authenticated Role

Function State Variables

Function Function Calls
_owner

setManager

mint

_manager

_mint

In the contract SWAP the role _owner has authority over the functions shown in the diagram below.
Any compromise to the

_owner account may allow the hacker to take advantage of this authority and set fees or withdraw fees.

TCK-01 TOKENWOLF - AUDIT

Function

Function Calls

Function Calls

Function State Variables

Authenticated Role

Function Calls

withdrawCollectedFees

showCollectedFees

IERC20

owner

setFees
_takerFee

_makerFee

_owner

In the contract Ballot the role _chairperson has authority over the function shown in the diagram below.
Any

compromise to the _chairperson account may allow the hacker to take advantage of this authority and add a proposal.

Authenticated Role Function Function Calls

_chairperson propose Proposal

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets.
Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

TCK-01 TOKENWOLF - AUDIT

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

Tokenwolf Team:

Because our platform is intended to be used for regulated Security Tokens (where only users may be allowed to trade who

have made a KYC/AML process) and the tokens are issued by a BaFIN regulated company a a certain degree of

centralization is necessary.

We are aware of the risks about the private key. Therefore, such transactions are only carried out with cold wallet

We decided to use the multisig implementation of paxos (https://github.com/paxosglobal/simple-multisig).

We will transfer _owner, _manager and _chairperson to multisig contracts after contract creation.

We will use 2/3 Multisign for the first contracts deployed.

TCK-01 TOKENWOLF - AUDIT

https://github.com/paxosglobal/simple-multisig

TCK-02 MISSING ZERO ADDRESS VALIDATION

Category Severity Location Status

Volatile

Code
Minor

projects/Tokenwolf/contracts/Ballot.sol: 31; projects/Tokenwolf/contracts/Sw

ap2.sol: 97, 98; projects/Tokenwolf/contracts/Token3.sol: 40, 159
Resolved

Description

Addresses should be checked before assignment or external call to make sure they are not zero addresses.

31 _tokenAddress = _token;

_token is not zero-checked before being used.

97 _token = token;

token is not zero-checked before being used.

98 _otherToken = otherToken;

otherToken is not zero-checked before being used.

40 _ownershipContract = ownershipContract_;

ownershipContract_ is not zero-checked before being used.

159 _manager = newManager;

newManager is not zero-checked before being used.

Recommendation

We advise adding a zero-check for the passed-in address value to prevent unexpected errors.

TCK-02 TOKENWOLF - AUDIT

https://accelerator.audit.certikpowered.info/project/7c676880-3f87-11ed-ab05-d717e89b76ba/report?fid=1665154591605

Alleviation

This issue was resolved in the updated code.

TCK-02 TOKENWOLF - AUDIT

TTC-01 INITIAL TOKEN DISTRIBUTION

Category Severity Location Status

Centralization / Privilege Major projects/Tokenwolf/contracts/Token3.sol: 36 Mitigated

Description

36 constructor(string memory name_, string memory symbol_, uint8 decimals_,

uint256 totalSupply_, address ownershipContract_) ERC20(name_, symbol_)

ERC20Permit(name_) {

37 _decimals = decimals_;

38 // Total Supply mint

39 _mint(msg.sender, totalSupply_);

40

41 _owner = msg.sender;

42 _manager = msg.sender;

43 _ownershipContract = ownershipContract_;

44 }

totalSupply_ amount of tokens are sent to the contract deployer when deploying the contract SecurityToken . This

could be a centralization risk as the deployer can distribute those tokens without obtaining the consensus of the community.

Recommendation

We recommend the team to be transparent regarding the initial token distribution process, and the team shall make enough

efforts to restrict the access of the private key.

Alleviation

Tokenwolf Team:

Because the Tokens we want to emit are regulated Security Tokens they are bound to real securities. e.g. 1 Token

represents 1 share in a company or 1/10000 of a property.

There are "real" contracts between token holders and the company issuing the tokens who guarantee that mapping ("profit

sharing rights").

So the initial distribution is defined within these regulatory approved contracts. An additional distribuition is only possible if the

company raises new capital (like a company issuing new shares)

This process (minting) will be done by a BaFIN (German financial regulator) regulated company.

The importance of a good secured private key is known. We plan to use cold wallets for these transactions.

TTC-01 TOKENWOLF - AUDIT

https://accelerator.audit.certikpowered.info/project/7c676880-3f87-11ed-ab05-d717e89b76ba/report?fid=1665241065142

Multisig will be implemented at the start of the project.

Ownership of the token will be transferred to a multisig contract based on this: https://github.com/paxosglobal/simple-

multisig/blob/master/contracts/SimpleMultiSig.sol

TTC-01 TOKENWOLF - AUDIT

https://github.com/paxosglobal/simple-multisig/blob/master/contracts/SimpleMultiSig.sol

STC-10 RESTORE DELETED OFFER

Category Severity Location Status

Logical Issue Informational projects/Tokenwolf/contracts/Swap2.sol: 339~341 Resolved

Description

339 if (offer.quantity == 0) cancelOffer(id);

340 // save modified offer to storage

341 offers[id] = offer;

359 function cancelOffer(uint8 id) public {

360 // delete offer from storage and mark the slot as free

361 delete(offers[id]);

362 usedSlots[id] = false;

363 _offerCount--;

364 // fire event

365 emit OffersChanged();

366 }

In the function acceptOffer() , the mapping offers restores an offer after removing it when offer.quantity == 0.

Recommendation

We recommend not restoring deleted offers in the mapping offers .

Alleviation

This issue was resolved in the updated code.

STC-10 TOKENWOLF - AUDIT

https://accelerator.audit.certikpowered.info/project/7c676880-3f87-11ed-ab05-d717e89b76ba/report?fid=1665259818427

STC-11 INVALID CHECKS ON amount

Category Severity Location Status

Logical Issue Informational projects/Tokenwolf/contracts/Swap2.sol: 259~260 Resolved

Description

The function addOffer() checks if the offer creators have enough balance of corresponding tokens and if they approve

enough allowance for this contract.

For buy offers, because the following require checks do not check the "taker fee" which is charged out of amount , requiring

both the balance and the allowance >= amount cannot ensure that the buyer has enough tokens for trade.

257 uint256 amount = quantity * price / 10**decimals1;

258 // allowance and balance_of must be sufficient

259 require(token2.balanceOf(msg.sender) >= amount, "Not enough funds");

260 require(token2.allowance(msg.sender, address(this)) >= amount, "Not

enough allowance");

Recommendation

We recommend adding or modifying the require checks to ensure the offer creator has enough balance and approves

enough allowance for this contract.

Alleviation

This issue was resolved in the updated code.

STC-11 TOKENWOLF - AUDIT

https://accelerator.audit.certikpowered.info/project/7c676880-3f87-11ed-ab05-d717e89b76ba/report?fid=1665330731197

OPTIMIZATIONS TOKENWOLF - AUDIT

ID Title Category Severity Status

STC-09 Gas Optimization In showOffers() Gas Optimization Optimization Resolved

TCK-03 Variables That Could Be Declared As Immutable Gas Optimization Optimization Resolved

OPTIMIZATIONS TOKENWOLF - AUDIT

https://accelerator.audit.certikpowered.info/project/7c676880-3f87-11ed-ab05-d717e89b76ba/report?fid=1665261685712
https://accelerator.audit.certikpowered.info/project/7c676880-3f87-11ed-ab05-d717e89b76ba/report?fid=1665152973794

STC-09 GAS OPTIMIZATION IN showOffers()

Category Severity Location Status

Gas Optimization Optimization projects/Tokenwolf/contracts/Swap2.sol: 410 Resolved

Description

The function call of checkOfferCounterpart() in the function showOffers() can be called in the condition of if

(usedSlots[t] == true) for gas saving.

Recommendation

We recommend calling checkOfferCounterpart() for only exiting offers.

Alleviation

This issue was resolved in the updated code.

STC-09 TOKENWOLF - AUDIT

https://accelerator.audit.certikpowered.info/project/7c676880-3f87-11ed-ab05-d717e89b76ba/report?fid=1665261685712

TCK-03 VARIABLES THAT COULD BE DECLARED AS IMMUTABLE

Category Severity Location Status

Gas

Optimization
Optimization

projects/Tokenwolf/contracts/Ballot.sol: 20, 22; projects/Tokenwol

f/contracts/Swap2.sol: 71, 73, 75, 77; projects/Tokenwolf/contract

s/Token3.sol: 20, 23, 25

Resolved

Description

The linked variables assigned in the constructor can be declared as immutable . Immutable state variables can be assigned

during contract creation but will remain constant throughout the lifetime of a deployed contract. A big advantage of immutable

variables is that reading them is significantly cheaper than reading from regular state variables since they will not be stored in

storage.

Recommendation

We recommend declaring these variables as immutable.

Alleviation

This issue was resolved in the updated code.

TCK-03 TOKENWOLF - AUDIT

https://accelerator.audit.certikpowered.info/project/7c676880-3f87-11ed-ab05-d717e89b76ba/report?fid=1665152973794

FORMAL VERIFICATION TOKENWOLF - AUDIT

Formal guarantees about the behavior of smart contracts can be obtained by reasoning about properties relating to the entire

contract (e.g. contract invariants) or to specific functions of the contract. Once such properties are proven to be valid, they

guarantee that the contract behaves as specified by the property. As part of this audit, we applied automated formal

verification (symbolic model checking) to prove that well-known functions in the smart contracts adhere to their expected

behavior.

Considered Functions And Scope

Verification of ERC-20 compliance

We verified properties of the public interface of those token contracts that implement the ERC-20 interface. This covers

Functions transfer and transferFrom that are widely used for token transfers,

functions approve and allowance that enable the owner of an account to delegate a certain subset of her tokens

to another account (i.e. to grant an allowance), and

the functions balanceOf and totalSupply , which are verified to correctly reflect the internal state of the contract.

The properties that were considered within the scope of this audit are as follows:

Property Name Title

erc20-transfer-revert-zero Function transfer Prevents Transfers to the Zero Address

erc20-transfer-succeed-self Function transfer Succeeds on Admissible Self Transfers

erc20-transfer-correct-amount Function transfer Transfers the Correct Amount in Non-self Transfers

erc20-transfer-succeed-normal Function transfer Succeeds on Admissible Non-self Transfers

erc20-transfer-correct-amount-self Function transfer Transfers the Correct Amount in Self Transfers

erc20-transfer-change-state Function transfer Has No Unexpected State Changes

erc20-transfer-exceed-balance
Function transfer Fails if Requested Amount Exceeds Available

Balance

erc20-transfer-recipient-overflow Function transfer Prevents Overflows in the Recipient's Balance

erc20-transfer-false
If Function transfer Returns false , the Contract State Has Not Been

Changed

erc20-transfer-never-return-false Function transfer Never Returns false

FORMAL VERIFICATION TOKENWOLF - AUDIT

Property Name Title

erc20-transferfrom-revert-to-zero Function transferFrom Fails for Transfers To the Zero Address

erc20-transferfrom-revert-from-zero Function transferFrom Fails for Transfers From the Zero Address

erc20-transferfrom-succeed-normal Function transferFrom Succeeds on Admissible Non-self Transfers

erc20-transferfrom-correct-amount-self Function transferFrom Performs Self Transfers Correctly

erc20-transferfrom-succeed-self Function transferFrom Succeeds on Admissible Self Transfers

erc20-transferfrom-correct-amount
Function transferFrom Transfers the Correct Amount in Non-self

Transfers

erc20-transferfrom-correct-allowance Function transferFrom Updated the Allowance Correctly

erc20-transferfrom-fail-exceed-balance
Function transferFrom Fails if the Requested Amount Exceeds the

Available Balance

erc20-transferfrom-fail-exceed-allowance
Function transferFrom Fails if the Requested Amount Exceeds the

Available Allowance

erc20-transferfrom-change-state Function transferFrom Has No Unexpected State Changes

erc20-transferfrom-false
If Function transferFrom Returns false , the Contract's State Has Not

Been Changed

erc20-totalsupply-succeed-always Function totalSupply Always Succeeds

erc20-transferfrom-fail-recipient-overflow Function transferFrom Prevents Overflows in the Recipient's Balance

erc20-transferfrom-never-return-false Function transferFrom Never Returns false

erc20-totalsupply-correct-value
Function totalSupply Returns the Value of the Corresponding State

Variable

erc20-totalsupply-change-state Function totalSupply Does Not Change the Contract's State

erc20-balanceof-succeed-always Function balanceOf Always Succeeds

erc20-balanceof-correct-value Function balanceOf Returns the Correct Value

erc20-allowance-succeed-always Function allowance Always Succeeds

erc20-balanceof-change-state Function balanceOf Does Not Change the Contract's State

erc20-allowance-correct-value Function allowance Returns Correct Value

FORMAL VERIFICATION TOKENWOLF - AUDIT

Property Name Title

erc20-allowance-change-state Function allowance Does Not Change the Contract's State

erc20-approve-revert-zero Function approve Prevents Giving Approvals For the Zero Address

erc20-approve-succeed-normal Function approve Succeeds for Admissible Inputs

erc20-approve-correct-amount Function approve Updates the Approval Mapping Correctly

erc20-approve-change-state Function approve Has No Unexpected State Changes

erc20-approve-false
If Function approve Returns false , the Contract's State Has Not Been

Changed

erc20-approve-never-return-false Function approve Never Returns false

Verification Results

For the following contracts, model checking established that each of the 38 properties that were in scope of this audit (see

scope) are valid:

Contract ERC20 (Source File projects/Tokenwolf/contracts/openzeppelin/token/ERC20/ERC20.sol)

Detailed results for function transfer

Property Name Final Result Remarks

erc20-transfer-revert-zero True

erc20-transfer-succeed-self True

erc20-transfer-correct-amount True

erc20-transfer-succeed-normal True

erc20-transfer-correct-amount-self True

erc20-transfer-change-state True

erc20-transfer-exceed-balance True

erc20-transfer-recipient-overflow True

erc20-transfer-false True

erc20-transfer-never-return-false True

FORMAL VERIFICATION TOKENWOLF - AUDIT

Detailed results for function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-revert-to-zero True

erc20-transferfrom-revert-from-zero True

erc20-transferfrom-succeed-normal True

erc20-transferfrom-correct-amount-self True

erc20-transferfrom-succeed-self True

erc20-transferfrom-correct-amount True

erc20-transferfrom-correct-allowance True

erc20-transferfrom-fail-exceed-balance True

erc20-transferfrom-fail-exceed-allowance True

erc20-transferfrom-change-state True

erc20-transferfrom-false True

erc20-transferfrom-fail-recipient-overflow True

erc20-transferfrom-never-return-false True

Detailed results for function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-correct-value True

erc20-totalsupply-change-state True

FORMAL VERIFICATION TOKENWOLF - AUDIT

Detailed results for function balanceOf

Property Name Final Result Remarks

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

erc20-balanceof-change-state True

Detailed results for function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always True

erc20-allowance-correct-value True

erc20-allowance-change-state True

Detailed results for function approve

Property Name Final Result Remarks

erc20-approve-revert-zero True

erc20-approve-succeed-normal True

erc20-approve-correct-amount True

erc20-approve-change-state True

erc20-approve-false True

erc20-approve-never-return-false True

FORMAL VERIFICATION TOKENWOLF - AUDIT

APPENDIX TOKENWOLF - AUDIT

Finding Categories

Categories Description

Centralization

/ Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Gas

Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more optimal

EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Mathematical

Operations

Mathematical Operation findings relate to mishandling of math formulas, such as overflows, incorrect

operations etc.

Logical Issue
Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Control Flow
Control Flow findings concern the access control imposed on functions, such as owner-only functions

being invoke-able by anyone under certain circumstances.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that

may result in a vulnerability.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

APPENDIX TOKENWOLF - AUDIT

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with

the Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL

WARRANTIES ARISING FROM COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE

FOREGOING, CERTIK MAKES NO WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE

ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE

USE THEREOF, WILL MEET CUSTOMER’S OR ANY OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED

RESULT, BE COMPATIBLE OR WORK WITH ANY SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE,

ACCURATE, COMPLETE, FREE OF HARMFUL CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE

DISCLAIMER TOKENWOLF - AUDIT

FOREGOING, CERTIK PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY

KIND THAT THE SERVICE WILL MEET CUSTOMER’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE

COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE, APPLICATIONS, SYSTEMS OR SERVICES, OPERATE

WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR RELIABILITY STANDARDS OR BE ERROR FREE OR

THAT ANY ERRORS OR DEFECTS CAN OR WILL BE CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME

NO LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER TOKENWOLF - AUDIT

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

Tokenwolf - Audit Security Assessment CertiK Verified on Oct 20th, 2022 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

